Enabling Concepts for 5G
14th International Conference on Frontiers of Information Technology (FIT'16)

Kashif Mahmood
Next Generation Network Technology Group, Telenor Research, Norway
Highlights of what we do in Telenor Research

Provide **LPWA infrastructure** and drive innovation and research in the fields of big data **analytics** and **AI**.

FierceWireless

Telenor seeks to secure Norway’s place in AI, big data, and IoT sectors

Telenor to invest €5m in IoT networks and AI lab in Norway

How to use Big Data for Social Good

1st Nordic Conference on ICT - 5G: Expected Impact - Oslo 5-6 April 2016
What is 5G

2G 1990 **Mobile** Voice & SMS

3G 2000 **Mobile** Internet

4G 2010 **Mobile** broadband
5G is Integrating the verticals

- **2G** 1990: **Mobile** Voice & SMS
- **3G** 2000: **Mobile** Internet
- **4G** 2010: **Mobile** broadband
- **5G** 2020: Every “Vertical” Connected
5G needs to incorporate different characteristics and requirements of the verticals

![Graph showing the proportion of values for M2M and Smartphone](image-url)
5G needs to incorporate different characteristics and requirements of the verticals.
5G empowering the verticals

Factories of the Future
- Time-critical process control
- Non time-critical factory automation
- Remote control
- Intra/Inter-enterprise communication
- Connected goods

Energy
- Grid access
- Grid backhaul
- Grid backbone

E-health
- Assets and interventions management in Hospitals
 - Robotics
 - Remote monitoring
 - Smarter medication

Media & Entertainment
- Ultra High-Fidelity Media
- On-site Live Event Experience
- User/Machine Generated Content
- Immersive and Integrated Media
- Cooperative Media Production
- Collaborative Gaming

Source: 5GPPP white paper 2016
5G empowering the verticals

- Time-critical process control
- Non time-critical factory automation
- Remote control
- Intr/Inter-enterprise communication
- Connected goods

ENERGY

- Grid access
- Grid backhaul
- Grid backbone

FACTORIES OF THE FUTURE

Source: 5GPPP white paper 2016
5G empowering the verticals

FACTORIES OF THE FUTURE
- Time-critical process control
- Non time-critical factory automation
- Remote control
- Intra/Inter-enterprise communication
- Connected goods

ENERGY
- Grid access
- Grid backhaul
- Grid backbone

MEDIA & ENTERTAINMENT
- Ultra High Fidelity Media
- On-site Live Event Experience
- User/Machine Generated Content
- Immersive and Integrated Media
- Cooperative Media Production
- Collaborative Gaming

e-HEALTH
- Assets and interventions management in Hospital
- Robotics
- Remote monitoring
- Smarter medication

Source: 5GPPP white paper 2016
5G empowering the verticals

FACTORIES OF THE FUTURE
- Time-critical process control
- Non time-critical factory automation
- Remote control
- Intr/Inter-enterprise communication
- Connected goods

ENERGY
- Grid access
- Grid backhaul
- Grid backbone

e-HEALTH
- Assets and interventions management in Hospital
- Robotics
- Remote monitoring
- Smarter medication

MEDIA & ENTERTAINMENT
- Ultra High Fidelity Media
- On-site Live Event Experience
- User/Machine Generated Content
- Immersive and Integrated Media
- Cooperative Media Production
- Collaborative Gaming

Source: 5GPPP white paper 2016
5G empowering the verticals

FACTORIES OF THE FUTURE
- Time-critical process control
- Non time-critical factory automation
- Remote control
- Intra/Inter-enterprise communication
- Connected goods

ENERGY
- Grid access
- Grid backhaul
- Grid backbone

e-HEALTH
- Assets and interventions management in Hospital
- Robotics
- Remote monitoring
- Smarter medication

MEDIA & ENTERTAINMENT
- Ultra High-Fidelity Media
- On-site Live Event Experience
- User/Machine Generated Content
- Immersive and Integrated Media
- Cooperative Media Production
- Collaborative Gaming

Use-cases

- Automated driving
- Share My View
- Bird’s Eye View
- Digitalization of Transport and Logistics
- Information Society on the road

Source: 5GPPP white paper 2016
Verticals have diverse requirements

Source: 5GPPP white paper 2016
Conceive and develop technology enablers to design a network adaptable to verticals.
Current Mobile Network Architecture

(a) Current Mobile Network Architecture

Coupled hardware and Software

Infrastructure

Coupled Control and Data Planes

Legend:
- CP: Control Plane
- DP: Data Plane

Telenor Research
Enabling concepts

- Network softwarization
- Network slicing
- Architectural modularization
- ...
Network Softwarization propelled by NFV and SDN

(a) Current Mobile Network Architecture

(b) Softwarized Mobile Network Architecture

Coupled hardware & Software

Coupled Control and Data Planes

NFV – Network Function Virtualization
SDN – Software Defined Networking

Enabling Concept: network softwarization
Network Function Virtualization (NFV) decouples network functions from hardware so they can run in software.

Classical Network Function approach

- Function A
- Function B
- Function C
- Function D
- Function E
- Function F

NFV

- Function A
- Function B
- Function C
- Function D
- Function E
- Function F

Virtualization Layer

Commodity Hardware
(compute, storage, network)

Enabling Concept: network softwarization
NFV: An Example

Classical Network Function approach

- EPC
- SBC
- IMS
- Router
- DPI
- CDN

NFV

- EPC
- SBC
- IMS
- Router
- DPI
- CDN

Virtualization Layer

Commodity Hardware
(compute, storage, network)

Enabling Concept: network softwarization
Software Defined Networking (SDN) decouples the control and data planes to enable logically centralized network control.
Key Drivers for Network Virtualization using NFV and SDN

• **Flexible and fast service delivery** through automated deployment and operation of network and functions.

• **Operational efficiency** using common potentially centralized platform with network functions from multiple vendors.

• **Software-oriented innovation** to rapidly prototype, test and introduce new services and generate new revenue streams.

• **Reduced CAPEX** over time through opening of the ecosystem and COTS IT HW.

NFV – Network Function Virtualization
SDN – Software Defined Networking
Use case 1: Network Virtualization enabled vEPC enables new Opportunities

Enabling Concept: network softwarization
Use case 2: Cloud-RAN can increase performance and cost efficiency

Enabling Concept: network softwarization
Use case 2: Cloud-RAN can increase performance and cost efficiency

Benefits
- Spectral efficiency (SON, COMP)
- Resource utilization & energy consumption
- Management and operation - OPEX
- Faster time-to-market
- Enables edge computing and services

Challenges
- Fronthaul capacity and latency
- Performance of virtual resources (e.g. compute)

Enabling Concept: network softwarization
Test-bed setup – Field figure with 2 iRRH sites

Enabling Concept: network softwarization
Enabling concepts

- Network softwarization
- Network slicing
- Architectural modularization
- ...

Telenor Research
Network Slicing to provide flexible services and infrastructure to verticals

A network slice is an independent logical network, made by the interconnection of a set of network functions and which can be independently instantiated and operated over a set of physical or virtual infrastructure to support the communication service requirements of a multiple use cases from the verticals.
Enabling concepts

- Network softwarization
- Network slicing
- Architectural modularization
- ...

Telenor Research
Modularization to build a flexible network architecture
Modularization natively supports Network slicing

- IoT Network slice with no mobility and relaxed security requirements
Modularization natively supports Network slicing

- Mobile Broadband Network slice

5G control
Architecture modularization is an agreed concept in 3GPP

11 - 15 July 2016, Vienna, Austria

Source: Orange, NEC, Telenor, Interdigital
Title: Solution for Key Issue 7: The Interconnection of Modular Network Functions
Document for: Approval
Agenda Item: 6.10.7
Work Item / Release: FS_NextGen/Rel-14

Abstract of the contribution: This contribution provides a solution for the Key Issue #7 based on a model for Network Architecture Modularisation.
Security in 5G

- HaaS

- Will security be the biggest show stopper in adaption towards softwarized, sliced, modularized architecture?
Conclusion

- 5G is integrating the verticals
- Conceive and develop **technology enablers** to design a network adaptable to verticals.
- Current architecture poses a lot of challenges
Conclusion

- 5G is integrating the verticals
- Conceive and develop technology enablers to design a network adaptable to verticals.
- Current architecture poses a lot of challenges
- Network softwarization propelled by NFV and SDN can enable dynamic network for flexible and fast service delivery enabling software oriented innovation.
 - Virtualized EPC leveraging virtualization enables new opportunities
 - Cloud-RAN can increase performance and cost efficiency
Conclusion

- 5G is integrating the verticals
- Conceive and develop **technology enablers** to design a network adaptable to verticals.
- Current architecture poses a lot of challenges
- **Network softwarization** propelled by NFV and SDN can enable dynamic network for flexible and fast service delivery enabling software oriented innovation.
 - Virtualized EPC leveraging virtualization enables new opportunities
 - Cloud-RAN can increase performance and cost efficiency
- Network slicing and modularization will enable network as-a-service paradigm for multiple verticals (e.g. MBB, IoT, V2V)
- Security is of paramount importance

kashif.mahmood@telenor.com
Research Scientist, Telenor Research, Norway